SET - 2

GR 14

I B. Tech I Semester Regular Examinations, January, 2015

Fundamentals of Bioprocess Computations (Biotechnology)

Time: 3 hours

Max Marks: 70

2 * 10 = 20 Marks

PART – A Answer ALL questions All questions carry equal marks *****

1) a	Define the role of API gravity scales in Petroleum Industries	[2]
1). a	Define the fole of All I gravity seales in Fettoleum industries.	[#]
b	Mention the units for Mass and Volumetric flow rate.	[2]
c	Define Pressure with units.	[2]
d	Write about Raoults Law.	[2]
e	What is the molecular weight of Phosphorous and Sulphur?	[2]
f	A combustion reactor is fed with 50kmol/h of butane and 2000 kmol/h of air. Calculate the % excess air used and composition of the gases leaving combustion reactor assuming complete combustion of butane?	[2]
g	Write about the applications of Ideal Gas Law.	[2]
h	How many moles of sulphuric acid will contain 64 kg of Sulphur?	[2]
i	Define Energy with units.	[2]
j	A sample of gas having volume of 1 m^3 is compressed to half of its original volume. The operation is carried for a fixed mass of gas at constant temperature. Calculate the percent increase in pressure?	[2]

PART – B Answer any FIVE questions All questions carry equal marks *****

5 * 10 = 50 Marks

- a) 98 grams of sulphuric acid (H₂SO₄) are dissolved in water to prepare one litre of [10] solution. Find the normality and molarity of solution?
 b) Find the grams of HCl needed to prepare 1 litre of 2N HCl solution?
- a) Ethanol and water forms azeotrope containing 96% ethanol by weight. Find the [10] composition of azeotrope by mole percentage?
 b) The available nitrogen (N) in the urea sample is found to be 45% by weight. Calculate the actual urea content in the sample?
- a) A gas mixture contains 0.274 kmol of HCl, 0.337 kmol of N₂ and 0.089 kmol of [10] O₂. Calculate (a) Average molecular weight of gas and (b) Volume occupied by this mixture at 405.3kPa and 303K?
 b) A cylinder contains 15 kg of liquid propane. What volume in m³will propane occupy if it is released and brought to NTP conditions?
- 5. A gas mixture has the following composition by volume: $SO_2 = 8.5 \%$, $O_2 = 10\%$ and [10] $N_2 = 81.5\%$. Find (a) the density of gas mixture at a temperature of 473 K and 202.65 kPa g and (b) composition by weight?
- 6. The dry bulb temperature and dew point of ambient air were found to be 302 K and [10] 291 K respectively. Barometer reads 100kPa. Calculate: (a) the absolute molal humidity, (b) the absolute humidity, (c) the % RH, (d) the % saturation, (e) the humid heat and (f) the humid volume?
- 7. The waste acid from a nitrating process containing 20% HNO₃, 55% H₂SO₄ and 25% [10] H₂O by weight is to be concentrated by addition of concentrated sulphuric acid containing 95% H₂SO₄ and concentrated nitric acid containing 90% HNO₃ to get desired mixed acid containing 26% HNO₃ and 60% H₂SO₄. Calculate the quantities of waste and concentrated acids requires for 1000 kg of desired mixed acid?
- 8. Ethylene oxide is prepared by oxidation of ethylene. 100 kmol of ethylene and 100 [10] kmol of O₂ are charged to a reactor. The percent conversion of ethylene is 85 and percent yeild of C₂H₄O is 94.12. Calculate the composition of product stream leaving the reactor. The reactions taking place are: C₂H₄ + $\frac{1}{2}$ O₂ \rightarrow C₂H₄O and C₂H₄ + 3O₂ \rightarrow 2CO₂ + 2H₂O.
